The coupling of magnetic and electric properties manifested in magnetoelectric (ME) materials has unlocked numerous possibilities for advancing technologies like energy harvesting, memory devices, and medical technologies. Due to this unique coupling, the magnetic properties of these materials can be tuned by an electric field; conversely, their electric polarization can be manipulated through a magnetic field. Over the past seven years, our lab work has focused on leveraging these materials to engineer implantable bioelectronics for various neuromodulation applications. One of the main challenges for bioelectronics is to design miniaturized solutions that can be delivered with minimally invasive procedures and yet can receive sufficient power to directly stimulate tissue or power electronics to perform functions like communication and sensing.