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Implantable bioelectronics for electrically modulating activities of 
specific cells have shown great success and exciting potential in 
treating a wide range of diseases. Some of the most representative 
therapies are cardiac pacemakers and neuromodulators for motor 
function restoration, pain relief and neural disorder treatment [1,2]. 
While several wireless miniaturized bio-stimulators have been 
demonstrated [3-6], most of them lack the capability of coordinated 
multisite stimulation, which is shown to be more effective in many 
scenarios [1,2]. Equipping an implant with electrode/LED arrays is a 
straightforward approach to add extra stimulation channels [7-9], but 
the deployment flexibility of stimulating spots is limited due to leads. 
[10] shows a wired retinal stimulator array to scale up the driving 
capability and ensure synchronization, but the heavy use of leads 
severely limits its applications. A two-site heart pacing system [2] is 
proposed with two independently powered and controlled implants 
for flexible leadless deployment. Because the implants are 
inductively powered by two transmitters (TXs) with frequency 
multiplexing, they face stricter EM exposure constrains for power 
transmission, more challenging device synchronization, and limited 
scalability to more implants. To circumvent these problems, this 
paper presents a hardware platform for coordinated and miniaturized 
multisite stimulating implants, wirelessly powered and controlled by 
a single TX. Magnetoelectric (ME) wireless power transfer with high 
power and efficiency, low body absorption, and less sensitivity to 
misalignment [4,5], is co-designed with a robust SoC to enable 
reliable operation and individual programmability of the implants. The 
presented system features: (1) robust operation with 2V source 
amplitude variations, covering up to 40mm distance between TX and 
implants; (2) individual addressability and programmability of each 
implant, leveraging PUF IDs; (3) >90% chip efficiency for 1.5-to-3.5V 
stimulation with fully programmable parameters; (4) no extra TX 
output power required for additional implants; (5) miniaturized 
implants with 6.2mm3 volume and 30mg mass.  

The implant integrates a ME film, a capacitor, on-board electrodes, 
and a SoC. The SoC interfaces with the ME film to receive power 
and data and drives programmable stimulation. ME induced voltage 
is rectified to Vrect and then converted by an adaptive switched-
capacitor power converter (SCPC), which provides proper voltage 
and buffers energy on the off-chip capacitor for stimulation, and 
provides VDD_H as a high-voltage supply for SoC. A 1V supply VDD_L 

is generated by LDO (Fig.1 bottom). Each implant cycles through 
charging, data transfer and stimulation phases. To maintain reliable 
synchronized operation of multiple implants under different ME 
voltages caused by different implantation depth and body movement, 
the phase transitions are solely controlled by the TX with a short 
notch of magnetic field (Fig.2 top). Comparator outputs in the active 
rectifier are reused as watchdog signals to detect the notches. 
Meanwhile, a global clock is extracted from the source by sensitive 
clock recovery circuit, ensuring synchronization among all implants.  

Individually programing every implant by a shared TX is critical for 
effective and flexible stimulating therapies. Downlink data transferred 
by ASK modulation contains a preamble for real-time demodulation 
threshold calibration, an 8-bit ID for addressing, and a 19-bit data 
payload for calibration and stimulation settings. The data update 
controller checks the ID in packet against the on-chip ID to decide 
whether to accept the new data. The on-chip 8-bit ID is realized with 
CMOS physical unclonable functions (PUF) leveraging transistor 
intrinsic variations to cheaply generate and store device-specific IDs 
(Fig.2 bottom). A inverter chain based PUF design with native NMOS 
regulation [11] is employed. Because of the narrow operating 
temperature range and the native voltage regulation, 15-cycle 
temporal majority voting (TMV) is sufficient to filter out thermal noise 
and ensure PUF’s reliability. The ID generation is triggered by power-
on reset signal and clock gated after the ID is loaded to registers. 

Variations of input voltage and 
power of implants, caused by their 
distance and misalignment with the 
TX, are unavoidable in practice, 
especially for multisite implants. 
Thus, robust power recovery to 
support stimulation across a wide 
source conditions is highly desired. 
Simply generating a high enough 
voltage for stimulation driver 
(VDD_stim) may ensure robustness 
but will suffer from high power loss 
and thus heat dissipation [3]. Alternatively, unregulated voltage 
stimulation by directly driving electrodes with charged capacitors has 
high efficiency but sacrifices precise charge deposition control [6]. To 
achieve the desired robustness and efficiency without a complicated 
feedback and reconfiguration loop as in [12], the proposed SCPC 
directly generate a VDD_stim that is 10% higher than the desired 
stimulus amplitude, and relies on the off-chip capacitor and a 
regulator-style stimulation driver to support regulated mono- and bi-
phasic stimulus. Regulation of VDD_stim is realized by disconnecting 
the capacitor from SCPC, the core of which is a charge pump and a 
charging controller, once it reaches the desired level. High-speed 
amplifiers inside the stimulation driver regulates the stimulus. To 
save power, the amplifier will only be turned on in the stimulation 
phase. The SCPC also includes an always-on high voltage selector 
to generate VDD_H, which connects VDD_H to the higher one between 
Vrect and VDD_stim and guarantees cold startup using Vrect (Fig. 3). 

Fig.4 captures the operation waveforms of the implant. VDD_stim is 
charged up and regulated to 2.75V, then drops to 2.15V after the 
2.5V, 1.2ms bi-phasic stimulation. It is verified that the implant 
maintains its operation with maximum stimulation amplitude (3.5V) 
under large ME source variations (1.5–2.7V). 90% stimulating 
efficiency is achieved as long as the amplitude is larger than 1.5V. 
Power transfer at various distances are measured, which shows a 
maximum TX-RX distance of 40mm and a highest power transfer 
efficiency (PTE) of 1.03%. Individual programming of two implants 
by a single TX is illustrated in Fig.5 (top left). 

An in-vitro test with the a 2cm thick porcine tissue as a medium is 
conducted (Fig.5, top right), which demonstrates flexible implant 
deployment covering a space with 35mm radius, and synchronized 
stimulations by two implants with programmed 0.01-to-0.8ms delays. 
Based on simulation of the specific absorption rate (SAR) and the 
electric field induction in a coil-generated 330kHz magnetic field, a 
magnetic strength of 0.1mT, which is enough to sustain implant’s 
functionality, can be delivered to a depth of 60mm without violating 
the IEEE C95.1-2019 standards (unrestricted environment).   

The proposed system is further validated in-vivo using a transgenic 
line of Hydra vulgaris as a model for muscle stimulation and a rat 
model for neural stimulation. Hydra naturally express a calcium 
sensitive fluorescent protein, GCaMP7b, as well as voltage-gated ion 
channels. To model synchronous stimulation of muscle tissue, two 
hydra are used. In order to synchronize the muscle contractions, we 
provide 3.5V, 20Hz, 1.2ms pulse width, biphasic stimulation pulse 
trains. This results in >200% GCaMP7b fluorescence increases 
which demonstrates activation of ion channels resulting in stimulus 
aligned muscle contractions in both organisms (Fig.6 top left). We 
also stimulate the sciatic nerve of the rat with varying amplitudes. A 
graded response in the intensity of the rat leg kick is measured with 
EMG of the plantar muscles (Fig.6 top right). The comparison table 
with other bio-stimulating systems is given in Fig. 6 (bottom). 
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Fig. 1. Concepts of multisite bio-stimulation and various multisite 
stimulating system structures; illustration of the implant, architecture 
of its SoC, and principles of ME power transfer for multiple RXs. 
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Fig. 2. Diagram of SoC operating phase transition and clock 
recovery; diagram of data recovery circuitry and schematics of PUF. 
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