A 0.84pJ/cycle Wheatstone Bridge Based CMOS RC Oscillator with Reconfigurable Frequencies

Peiyu Chen¹, Dai Li¹, Zhanghao Yu¹, Qing Jin² and Kaiyuan Yang¹ ¹Rice University, Houston, TX, USA; ²Xi'an Jiaotong University, Xi'an, China **Correspondence: Dr. Kaiyuan Yang (kyang@rice.edu)**

Introduction

- Real-Time Clocks (RTCs) are required in lowpower IoT devices
- Heavily duty-cycled systems
- Wake up, synchronize, timestamp
- Size, volume, power, cost constraints

Crystal oscillators

- "Large" volume and footprint

Fully integrated CMOS RC oscillators **Key Metrics**: *Energy vs. Frequency stability*

Prior Arts

Linearized System Modeling

To minimize f_{ERROR} : 1. f_{NORM} should be close to f_{REF} ; 2. G_{FVC} should be large enough

VTOP - VBOTTOM

Voltage-Controlled Oscillator

Prototype and Measurement Setup

180nm Prototype

 $V_{DD}(V)$

1.8

	This work			ISSCC 16' [3]	ISSCC 13' [6]	ISSCC 14' [5]	VLSI 12' [7]	JSSC 16' [4]	ISSCC 18' [1]	ISSCC 17' [2]
Technology	180nm			180nm	65nm	65nm	60nm	180nm	180nm	65nm
Frequency (KHz)	66.9	16.5	153.6	3	18.5	32.8	32.8	70.4	7e3	1.35e3
Area (mm2)	0.145		0.506	0.032	0.015	0.048	0.26	1.59	0.005	
TC (ppm/⁰C)	9.6ª	6.1	8.1	13.8	38.5	38.2°	16.7ª	34.3ª	3.85 ^b	96
Temperature Range (°C)	-20 to 100			-25 to 85	-40 to 90	-20 to 90	-20 to 100	-40 to 80	-45 to 85	0 to 150
Number of Samples	5			1	1	5	4	5	12	2
Line Sensitivity (%/V)	0.4	0.6	1.1	0.49	1	0.09	0.125	0.75	0.18	0.49
Supply Voltage Range (V)	1.2 to 1.9			0.85 to 1.4	1.3 to 3.3	1.15 to 1.45	1.6 to 3.2	1.2 to 3	1.7 to 2	0.9 to 1.9
Power (nW)	56	xx	113	4.7	120	190	4480	110	750	920
Energy/Cycle (pJ/Cycle)	0.84		0.74	1.6	6.5	5.8	136.6	1.56	93.8	0.7
^a Average value of measured s	^b Ca	^b Calculated using box method ^c Max value among measured samples.								

[1] A. Paidimarri, et al.,"A 120nW 18.5kHz RC oscillator with comparator offset cancellation for±0.25% temperature stability," ISSCC 201 2] A. Savanth, et al., "A0.68nW/kHz supply-independent Relaxation Oscillator with ±0.49%/V and 96ppm/°C stability," ISSCC 2017. [3] D. Griffith, et al., "A 190nW 33kHz RC oscillator with ±0.21% temperature stability and 4ppm long-term stability," ISSCC 2014. [4] C. Gürleyük, et al., "A CMOS Dual-RC frequency reference with ±250ppm inaccuracy from-45°C to 85°C," ISSCC 2018. [5] M. Choi, et al., "A 110nW Resistive Frequency Locked On-Chip Oscillator with 34.3 ppm/°C Temperature Stability for System-on-Chip Designs," JSSC, 2016.

[6] T. Jang, et al., "A 4.7nW 13.8ppm/°C self-biased wakeup timer using a switched-resistor scheme," ISSCC 2016. [7] K. Hsiao, "A 32.4 ppm/°C 3.2-1.6V self-chopped relaxation oscillator with adaptive supply generation," VLSIC 2012. [8] I. Lee, et al., "A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes," JSSC, 2016.

Measurement Results Measured TC with Different Resistor Ratios - 0- Ratio=3 F=153.6kHz 0.10 📥 Ratio=1/7 F=8.0kHz ъ 0.05 ਰੇ -0.05 100 100 80 60 -20 Temperature (°C) Measured TC vs. VCO fNORM f_{REF} = 16.5kHz 60 f_{REF} = 153.6kHz $f_{REF} = 66.9 \text{kHz}$ <u>a</u> 30 Ratio=3 100 150 200 250 300 f_{norm} (kHz) **Measured Allan Deviation** Measured @ Ratio=1 σ_γ(τ) 10 De 10 2.0 10⁻³ 10⁻ 10 **10**[°] 10

Comparison and Conclusions

^cMax value among measured samples.

and Bias 8.93%

Conclusions

τ(secs)

A Wheatstone Bridge-based CMOS Timer

- Eliminates high biasing power in prior arts
- Supports tunable oscillation frequencies with low area overhead
- VCO's f_{NORM} can track f_{REF} for better temperature stability

180nm CMOS Prototype

- Best-in-class 9.6ppm/°C temperature sensitivity
- 0.84pJ/cycle energy efficiency