Haotian Dai

EDUCATION

• Rice University	Houston, TX
• PhD Student, Electrical and Computer Engineering	Jan 2022 - Present
• University of Rochester	Rochester, NY
• Master of Electrical and Computer Engineering	Aug 2019 - Dec 2021
• Nanjing University	Nanjing, Jiangsu, China
• Bachelor of Microelectronic Science and Engineering; GPA: 87.8/100	Sept 2015 - June 2019

Coursework

- **Graduate Level**: Advanced Analog CMOS, RF And Microwave Integrated Circuit, Intro to VLSI, Detection Estimation Theory, Nanoelectronic Devices, Intro to Hardware Security
- Undergraduate Level: Analog Circuits, Digital Circuits, Circuit Analysis, Audio Electronics, Signal and Systems, Digital Signal Processing, Fundamentals of IC design, Semiconductor Physics, Fundamentals of Semiconductor Devices, Probability and Random Process

Skills

- Programming: Verilog HDL, Python (numpy, pandas), MATLAB, Latex, C
- Platforms: Cadence Virtuoso, HSPICE, LTSPICE, ASITIC, ADS, Multisim, Linux, Jupyter Notebook, Office
- Languages: Mandarin Chinese (Native), English (Proficient)

Research Interest

• Power Management, Hardware Security

Research Experience

Distributed DLDO featuring Power Regulation and Secure Hardware Masking

Rice University

- A novel edge-chasing quantizer (ECQ)-based digital LDO (DLDO) is distributed on local points of power grid to improve both power regulation and validity of independence between masking shares.
- A simulink model of distributed digital DLDO is establisheds to conduct simulation.
- Improvement in hardware masking with application of distributed DLDO is analyzed and compared to the cases with single DLDO and without DLDO.

Vulnerability of Hardware Masking in Practical Implementations

University of Rochester

- The dependence between leakage of shares are quantitatively analyzed and a mathematical expression is derived considering parasitic impedance of power delivery network during hardware implementation of masking.
- Implications of different design parameters of the power delivery network that affect the correlation between the leakage of different shares are explored.
- $\circ~$ Design guidelines to reduce the correlation between the leakage of different shares are discussed with reference to the mathematical expression.

Transformation of Student's T-test to Success Rate in Masking Scheme

University of Rochester

- $\circ~$ A transformation of Students's t-test to success rate is analyzed under masking scheme, revealing attack's successful rate based on t-values.
- A close-form equation is derived to show the relation between t-test and success rate and provide a more concrete evaluation on the security of masking implementation.
- A Novel Construction of 2D High-performance Artificial Synapse Nanjing University

July 2020 - Nov 2020

Nov 2020 - April 2021

Nov 2018 - May 2019

Jun 2021 - present

- Due to the high proton conductivity of Chitosan and ferroelectric polarization of PVDF-TrFe, a novel artificial 0 synapse is proposed with a sandwich structured FET composed by Chitosan, PVDF-TrFe and C8-BTBT to extend the retention time.
- Chitosan is first spin-coated as a flat substrate, and PVDF-TrFe and C8-BTBT are deposited by coffee-ring-driven assembly successively.
- The proposed synapse shows quick response when being charged and the maintenance time is three times longer 0 compared to the case without PVDF-TrFe.

PUBLICATIONS

- Dai, Haotian, and Selçuk Köse. "On the vulnerability of hardware masking in practical implementations." Proceedings of the 2021 on Great Lakes Symposium on VLSI. 2021.
- Chengdong Yang, Jun Qian, Qijing Wang, Sai Jiang, Yiwei Duan, Hengyuan Wang, Haotian Dai, Yun Li. "Additive-assisted "metal-wire-gap" process for N-type two-dimensional organic crystalline films," Organic Electronics, 2019, 68: 176-181. [paper link]

COURSE PROJECTS

RF Receiver Front-End Design

Team Project

• In this project, the front-end of an RF receiver for satellite comm downlink at S-band (2.2-2/3 GHz) is designed with ADS. An LNA, a mixer, seceral filters are implemented in the receiver. The output signal of the receiver frond-end is the intermediate-frequency (IF) signal, which will be converted to digital signals and further processed in the baseband for demodulation and decoding.

2-stage OTA Design

Personal Project

• In this project, a low-noise 2-stage OTA for the switched- capacitor type amplifier is designed to be used as a readout for MEMS capacitive accelerometer sensor. The OTA is designed with Cadence Virtuoso to meet a list of specifications.

Switched-capacitor Sample & Hold Circuits

Personal Project

• In this project, two sample & hold circuits are designed with Cadence Virsuoto to be capable of sampling input signals with maximum amplitude of 1V and frequencies up to 15 Mhz. The sample-and-hold stages are supposed to be used as an input-stage of a 16-bit A/D converter.

Implementation of Logic Module with Verilog HDL

Personal Project

• In this project, several logic modules are implemented with Verilog HDL on Multisim including Arithmetic logic unit(ALU), Sequence Controller, Counter, Memory and Multiplexer(MUX).

Intelligent Car Based on Embedded System

Personal Project

• In this project, an intelligent car is designed to be capable of avoiding obstacle, self-tracing and measuring distance. Python are used on Raspberry Pi to control several types of sensors and realize different functionalities.

TEACHING EXPERIENCE

Teaching Assistant for ECE 210 Circuit For Nonmajors

University of Rochester

- Corrected homework, midterm and finals for students, and provided reasons for each single deduction of points.
- Gave recitation to the students and helped answer their questions with inspiration.

Teaching Assistant for ECE 222 Integrated Circuits: Design & Analysis

University of Rochester

- Solved and Corrected homework, quiz and lab project, and provided detailed reasons for point deduction
- Provided weekly office hour and lab hour for students to address their questions.

Teaching Assistant for ECE 429 Audio Electronics

University of Rochester

- Solved and corrected homework and lab reports, and provided detailed reasons for point deduction
- Held office hours and helped answer students' questions with inspiration.

May 2020

Nov 2019

Dec 2019

May 2019

Jan 2019

Fall 2019

Spring 2020

Fall 2021